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Abstract
1. The use of drones to survey and monitor wildlife populations has increased ex-

ponentially. A common protocol used for data collection is planning flights with 
substantial overlap between successive photographs and lateral lines and then 
creating orthomosaics by merging the collected images. Because available meth-
ods for orthomosaic building assume that landscapes are static, unintended er-
rors arise when counting moving animals. Here, we describe these sources of 
error and discuss potential solutions and future developments needed.

2. Individuals can appear multiple times, be omitted or appear as faint ghosts or cut 
in half in the final mosaic. These errors can significantly impact abundance esti-
mates but are rarely acknowledged. Researchers should carefully consider if using 
orthomosaics is really needed for surveying wildlife. Currently, there is a lack of 
methods to prevent these errors from arising and to explicitly accommodate them 
in modelling approaches.

3. Future developments should focus on (a) creating methods to build orthomosaics 
that minimize these errors in the context of counting moving animals; (b) devel-
oping modelling approaches to estimate abundance while accounting for these 
errors; and (c) exploring alternative flight settings (e.g. amount of lateral overlap, 
sensor type, flight height and speed).

4. Using an example on Giant Amazon Turtles, we illustrate potential solutions with 
a method for orthomosaic building that prioritizes moving animals and a model-
ling approach to estimate the detection errors and correct abundance estimates. 
The developed prototype approach for creating orthomosaics revealed many 
more turtle individuals than the conventional approach, although it presented 
more double counts as well. In the modelling approach, we found that a turtle 
available for detection during the survey can have a probability of 31% of being 
omitted or ghosted during the conventional orthomosaic building process. We 
also found that 12% of the turtles appearing in a conventional orthomosaic cor-
respond to double counts.
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1  |  INTRODUC TION

Given the rapid anthropogenic environmental changes that wildlife 
species are experiencing worldwide, it has become crucial to develop 
and implement efficient methods to assess wildlife population size 
and monitor it over time (Besson et al., 2022; Butchart et al., 2010). 
Drones (also known as unoccupied aerial vehicles) have emerged as 
a cutting- edge tool for wildlife surveys, holding the promise of deliv-
ering accurate and timely abundance estimates (Christie et al., 2016; 
Linchant et al., 2015). The use of drones to count animals has in-
creased exponentially in the last decade (Dujon & Schofield, 2019; 
Elmore et al., 2023) for a wide myriad of species and environments, 
such as elephants in savannas (Vermeulen et al., 2013), whales in the 
ocean (Gray et al., 2019), primates in tropical forests (de Melo, 2021) 
and crocodilians in marshes (Scarpa & Piña, 2019). However, the 
establishment of the use of drones as a reliable and effective tool 
for sampling wildlife still faces important challenges due to multiple 
potential sources of bias in the procedures for converting collected 
imagery into abundance estimates.

A very common approach used in wildlife drone surveys is to fly 
drones with great overlap (e.g. 80%) between successive pictures 

and lateral lines (Elmore et al., 2023). This great overlap allows for 
the collected photographs to be merged into a single image mo-
saic (i.e. orthomosaic or orthophoto mosaic), which is then used 
to count individuals (Box 1). This procedure is particularly com-
mon when counting individuals that are spatially aggregated, such 
as nesting colonies of birds (e.g. Lyons et al., 2019; Weinstein 
et al., 2022), breeding colonies of seals (e.g. Sorrell et al., 2019) and 
basking areas of turtles (Bogolin et al., 2021). Orthomosaics are a 
conventional high- resolution mapping product from aerial images, 
derived from the combination of overlapping images that have 
been corrected for camera tilt, surface undulation and camera 
lens distortion (Westoby et al., 2012; Wolf et al., 2014). Critically, 
available methods to build these mosaics typically assume a static 
landscape but, because animals often move during flights, sev-
eral unintended errors typically arise when using these ortho-
mosaics to survey wildlife populations. Because the workflow of 
these methods is highly automated, users are typically not aware 
of these errors. Ultimately, these sources of error in orthomosaic 
building, together with other detection errors already widely ac-
knowledged in the literature, may result in substantial bias in abun-
dance estimation.

K E Y W O R D S
abundance estimation, detection errors, drones, photogrammetry, population monitoring, 
wildlife

BOX 1 Creating orthomosaics from drone imagery

The creation of orthomosaics from aerial surveys requires the flight to be planned with a high degree of overlap between successive 
photographs and lateral flight strips (e.g. ≥70% for drone imagery) such that each point on the ground appears in multiple images. 
These multiple points of view (i.e. stereoscopic view) allow the identification of unique features in different images, resulting in an 
estimate of depth (three- dimensional information) (Eltner et al., 2016; Wolf et al., 2014). Current methods to build these mosaics 
are based on photogrammetric techniques (e.g. Structure- from- Motion) that automatically identify the matching points in different 
overlapped images (Eltner et al., 2016; James & Robson, 2012; Westoby et al., 2012). The procedure to create orthomosaics involves 
three general steps:

• Step 1: The recognized image features (key- points) are matched in the multiple images and used to estimate and correct the cam-
era positions and angular orientations at the moments of the exposure.

• Step 2: A denser set of the matched features is created, and the estimated three- dimensional information is connected to generate 
a digital surface model (DSM) of the scene.

• Step 3: A horizontal 2D grid is populated with colour/brightness values based on the 3D DSM coordinates and the back- projected 
image coordinates from the associated photographs.

This procedure results in a high- resolution georeferenced mosaic corrected for camera tilt and surface undulations with known scale 
(i.e. orthorectified), which can be considered an accurate planimetric map. The approaches adopted to fill these orthomosaic cells 
typically involve selecting photographs whose centre region is closest to the cell and/or averaging brightness/colour from multi-
ple images (Luhmann et al., 2023). It is important to note that the degree of overlap between images (i.e. number of stereoscopic 
views) plays an important role in the quality of the orthomosaic (Eltner et al., 2016). Nevertheless, increasing the overlap results in 
more flight lines needed to cover the same area, potentially increasing some of the errors when counting moving animals. Other 
aspects that can also affect the quality of the final mosaic include the use of ground control points (Sanz- Ablanedo et al., 2018) 
and image texture and resolution (Westoby et al., 2012) but for brevity, we do not address these here.
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    |  3BRACK et al.

We describe here the potential sources of errors in animal counts 
that arise from the creation of orthomosaics and discuss future de-
velopments needed to deal with them. Since these sources of bias 
are widely ignored in the literature, our intention is to raise aware-
ness about these problems and provide some direction for future 
explorations. We exemplify these errors and pathways for future 
solutions using a dataset of Giant Amazon River Turtles (Podocnemis 
expansa) surveyed using drone imagery captured over a sandbank in 
the Guaporé/Iténez River (in the Brazil- Bolivia border) during a mass 
nesting event.

2  |  SOURCES OF ERROR WHEN 
COUNTING ANIMAL S IN ORTHOMOSAIC S

Wildlife counts in orthomosaics are subject to multiple sources 
of error. Generally, aerial count data, including counts based 
on orthomosaics, are subject to availability error, perception 
error and misidentification (Brack et al., 2018). Availability error 

occurs when an individual is unavailable for detection by being 
hidden from view (e.g. below vegetation or submerged underwa-
ter) or because it is temporarily outside the area during the flight. 
Perception or observation errors arise because, even when an in-
dividual is visible (i.e. available) in the imagery, a human reviewer 
or an algorithm can fail to detect it. Alternatively, other similar 
species (or even background feature) can be misidentified as the 
target species during the review process, especially when using 
automated detection algorithms (e.g. deep learning). These er-
rors are already discussed in the wildlife literature and occur re-
gardless of how images are processed (Brack et al., 2018, 2023; 
Caughley, 1974; Delisle et al., 2023; Pollock & Kendall, 1987). In 
this article, we focus on other sources of error that arise dur-
ing the process of creating orthomosaics (Figure 1). Because the 
main origin of these errors is due to the movement of individuals 
during the flight, it is important to note that the magnitude of 
these errors will depend on the characteristics of the species 
(e.g. movement behaviours) and of the survey design (e.g. flight 
plan).

F I G U R E  1  Detection errors resulting from merging multiple aerial images for the creation of orthomosaics when individuals are moving. 
(a) Flight with overlap between successive photographs and lateral strips while animals are moving. (b) Selected photographs from the 
collected imagery that will be projected into the final orthomosaic. (c) Resulting orthorectified mosaic with examples of the types of error 
that can arise when counting wildlife in orthomosaics.
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4  |    BRACK et al.

2.1  |  Double count

The same individual may appear more than once in the orthomosaic 
because the individual was moving during flight (Brack et al., 2018). 
Since the time between successive images is commonly very short 
(e.g. ≤1 s), double counts are more prone to occur when the indi-
vidual is moving between flight lines (Figure 1).

2.2  |  Omission

An individual that is present in the area of interest during the flight 
(and available for detection) might not appear in the orthomosaic due 
to two processes. First, if an animal moves in the opposite direction 
to the flight path of the planned lines (Figure 1), it may cross from an 
unsampled area into one that has already been surveyed and hence 
it might not appear in the imagery. This error would be similar to the 
availability error. Indeed, some have suggested that, when the move-
ments of individuals in an area are at random, appearances (double 
counts) and disappearances (omission) may cancel each other out 
(Brack et al., 2018; Delisle et al., 2023). Second, even if a moving in-
dividual is present in the collected photographs, it may disappear in 
the final mosaic because of the way the orthomosaic cells are filled. 
For instance, a set of mosaic cells can be populated with colour and 
brightness information from the images that were collected when 
the individual was not there.

2.3  |  Ghosting and cutting

Similar to the omission during the process of filling the orthomo-
saic pixels, some individuals may appear ghosted or cut (Figure 1). 
The averaging of the colour and brightness in the orthomosaic 
cells, derived from different images with and without the individ-
ual, can produce a ghosting or faded effect. On the contrary, if a 
single image is used to determine the colour and brightness values 
for each orthomosaic cell, the use of images from different flight 
lines may result in only part of a moving individual appearing in 
the final mosaic. The consequence of ghosting and cutting is that 
some individuals might be missed or, even if they are seen, it might 
be difficult to properly observe their characteristics (e.g. species, 
size, sex or unique marks).

3  |  POTENTIAL SOLUTIONS FOR 
ADDRESSING ORTHOMOSAIC COUNTING 
ERRORS

In this section, we explore potential solutions to overcome or miti-
gate the sources of errors when counting wildlife in orthomosaic 
and suggest future directions for methodological developments. 
Firstly, when planning drone- based surveys to estimate wildlife 

abundance, one should consider if using an orthomosaic is really 
necessary. It is possible that, in some situations, flights might have 
been planned with high overlap between images and orthomosa-
ics have been used to count individuals only because this is the 
traditional workflow for drone surveys. This workflow is facili-
tated by available software used to plan drone flights as this soft-
ware typically requires the drawing of a polygon around the area 
of interest and the programme automatically plans the flight path 
with overlapping photographs. However, this workflow to create 
orthomosaics can introduce unintentional errors that do not occur 
when counting individuals in single images. Importantly, foregoing 
the use of orthomosaics to count wildlife would potentially involve 
rethinking flight plans (e.g. planning flights with very low or even 
no overlap) and image reviewing procedures (e.g. manually remov-
ing double counts).

Nevertheless, the use of orthomosaics might be desirable in 
various contexts for counting wildlife, especially when surveying 
aggregated populations, such as nesting or breeding colonies (e.g. 
Kellenberger et al., 2021; McKellar et al., 2021; Sorrell et al., 2019; 
Weinstein et al., 2022). Additionally, when there is an interest in 
measuring individuals or distances accurately, orthomosaic build-
ing might be a valuable approach (e.g. Aubert et al., 2024). Thus, 
proper approaches are needed to eliminate, mitigate or estimate the 
sources of error that may affect counts conducted in orthomosaics 
in order to obtain reliable abundance estimation. We discuss poten-
tial approaches and the needed developments under three different 
strategies: (1) adapting orthomosaic building methods; (2) estimating 
errors and accounting for them when modelling abundance; and (3) 
considering alternative survey equipment and designs. We show ex-
amples of potential solutions for Strategies 1 and 2 using surveys of 
Giant Amazon Turtles in Section 4.

3.1  |  Adapting orthomosaic building method

Current approaches to create orthomosaics typically assume that 
the landscape is static and there is no available method for the 
situation when the object of interest is moving during the flight. 
Some software suites can detect moving objects, but this is done 
to enable their automatic elimination from the final mosaic (e.g. 
removing vehicles from streets in the ‘Deghosting’ processing op-
tion of Pix4Dmatic https:// suppo rt. pix4d. com/ hc/ en-  us/ artic les/ 
36004 82002 92# blend ). Hence, there is a great need for algorith-
mic approaches to build orthomosaics that detect and prioritize 
wildlife individuals. Recall that traditional methods to populate 
orthomosaic cells rely on average brightness and colour values 
of several photographs or on photographs that have their central 
regions closest to the target cell (see Box 1). An alternative ap-
proach would be to prioritize the species of interest when select-
ing photographs to populate the orthomosaic cell (see example in 
Section 4.1). This could be done by recognizing pixels (e.g. through 
spectral signatures) or specific regions (e.g. using machine learning 
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algorithms) in the single images that correspond to the species of 
interest and making sure that this information is used to fill the 
generated orthomosaic. Such an approach would avoid the ghost-
ing or omission of individuals, but double counts would still be a 
problem.

3.2  |  Estimating errors for abundance modelling

Modelling approaches to estimate and accommodate orthomo-
saicking errors in abundance estimation are imperative since we 
believe that it is not possible to completely avoid these errors 
from occurring. The probability of omitting or double counting 
individuals in orthomosaics may be estimated using additional 
information. For example, by marking some individuals in a way 
that is recognizable in the drone imagery, it is possible to esti-
mate the proportion of omissions and double counts (see exam-
ple in Section 4.2). Alternatively, these proportions can also be 
estimated if some individuals have been tagged with telemetry 
devices. One could even model (or simulate) movement patterns 
to estimate or predict the number of appearances and disappear-
ances during a flight (Hodgson et al., 2017). As a result, using these 
estimates of detection error rates, it is possible to estimate abun-
dance by correcting counts (e.g. using a Horvitz- Thompson esti-
mator, Corcoran et al., 2020) or by explicitly incorporating these 
estimates into a modelling approach (e.g. as informative prior dis-
tributions under a Bayesian approach, Martin et al., 2015). One 
option to formally accommodate these errors is to create an inte-
grated model to analyse two or more datasets (Isaac et al., 2020; 
Zipkin & Saunders, 2018). In such approaches, an auxiliary dataset 
containing high- quality information about one or more observa-
tion processes (e.g. mark- recapture data) is combined with overall 
population counts into a single modelling structure to obtain more 
accurate estimates.

3.3  |  Adjusting equipment and survey design

Some sampling design strategies involving the type of equipment 
used and/or flight path may be explored in order to mitigate errors 
associated with moving animals in the orthomosaic building pro-
cesses. Specifically, the fewer the number of flight lines needed 
to cover an area and the faster an area is covered, the smaller the 
errors will be. These two aspects can be achieved by reducing the 
overlap between images (but recall that this may limit the ability 
to create orthomosaics), flying higher using a very- high- resolution 
sensor (e.g. the 128 Mpx P5 camera from Phase One; https:// www. 
phase one. com/ ), and/or by conducting flights at high speeds (e.g. 
>70 km/h). Importantly, most of the available flight planning soft-
ware allows users to set the main direction of flight lines as well 
as the desired amount of frontal and lateral overlap. For instance, 
if the area of interest is flat (and high horizontal accuracy is not 

needed), an uncontrolled mosaic could be created using standard 
image stitching methods (e.g. Microsoft Image Composite Editor, 
see Gross & Heumann, 2016) with lower overlap between images 
(e.g. 30%–40%), reducing considerably the number of lines re-
quired. Another option is to use multiple drones at the same time, 
reducing the overall time needed to cover the entire area of inter-
est. Furthermore, different flight lines configurations may result in 
different magnitudes of error associated with moving individuals, 
especially when there is a preferable moving direction. For exam-
ple, if flight lines are planned perpendicular to the major direction 
that animals move, the number of double counts will tend to be 
much higher than when flight lines are parallel to the movements. 
This particular topic has received limited attention in wildlife sur-
veys (e.g. Baxter & Hamilton, 2018; Hodgson et al., 2017); there-
fore, further explorations on flight lines configurations that take 
into account movement patterns of individuals are needed. Finally, 
conducting the flights at moments when the individuals are less 
likely to move, such as flying over bird colonies close to sunset, can 
also help in mitigating these errors.

4  |  E X AMPLES OF POTENTIAL 
SOLUTIONS USING GIANT AMA ZON 
TURTLE SURVE YS

We exemplify an approach for orthomosaic building (Strategy 1) 
and for estimation of the detection errors for abundance model-
ling (Strategy 2) using a dataset of drone- based surveys of Giant 
Amazon River Turtles (Podocnemis expansa) (licence SISBIO/
ICMBio no. 80087). Surveys were carried out during a mass tur-
tle nesting event in October 2021 in the Guaporé/Iténez River 
(12.46° S, 63.83° W; Bolivia- Brazil border) (Figure 2). Four flights 
were conducted each day (at 6–7 AM) over a sandbank where 
the female turtles were nesting, using a multirotor drone Mavic 
Enterprise Advanced (DJI). Flights were preprogrammed to col-
lect data at 50 m above- ground level and with 70% and 80% of 
lateral and frontal overlap, respectively. We marked with white 
paint approximately 100 turtle individuals every day 3 h prior to 
these flights (i.e. 3 AM). Because of the unique markers in their 
carapaces, these data allowed us to assess the different sources 
of error.

4.1  |  Prioritizing animal individuals when 
creating orthomosaics

We used the images of one surveying day to explore a prototype 
approach to prioritize the projection of turtles in the orthomosaic. 
The approach relies on preprocessed products from a standard 
Structure- from- Motion/photogrammetric software, to which we 
then apply specific customizable criteria to populate the orthorec-
tified mosaic. We provide a description of the proposed prototype 
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6  |    BRACK et al.

approach in Appendix S1. The products extracted from the SfM 
software (Pix4Dmapper v. 4.8.4) were as follows: (i) the drone im-
ages corrected for lens distortion; (ii) corrected three- dimensional 
orientation and position of the camera during the shot; and (iii) 
a digital surface model of the entire area of interest. Then, for 
each cell of the 2D orthomosaic, we obtained the corresponding 
images that overlap that cell and applied a rule to fill this cell that 
prioritizes pixels containing the species of interest. If the selected 
images contained pixels corresponding to the spectral character-
istics of the species, we projected the animal pixels closest to the 
centre of the image. If the selected images did not have animal 
pixels, we only projected the pixels closest to the image centre. 
For this example, we used a saturation metric calculated from the 
red- green- blue (RGB) values to define the spectral signature of the 
turtles, but different rules can be applied depending on the scene 
and target species.

We show in Figure 3 a comparison of the resulting orthomosaic 
based on a conventional method and on our proposed prototype 

approach. It is possible to see that, in addition to the three individ-
uals projected using the conventional method, there are three more 
individuals projected by our approach, demonstrating its potential 
to mitigate omission and ghosting errors. It is important to note 
that the double count errors still remain and may have their mag-
nitude increased under this approach. Future developments could 
explore different criteria for pixel selection of different species, or 
more sophisticated machine learning algorithms (e.g. object- based 
image analysis or deep learning techniques; Chabot & Francis, 2016; 
Weinstein, 2017).

4.2  |  Estimating detection errors for abundance 
estimation

To illustrate how the different errors can be estimated for model-
ling abundance, we use the turtle dataset containing overall counts 
in the orthomosaics (created using a conventional approach) for 

F I G U R E  2  Flight path, resulting orthomosaic and detection errors in drone- based surveys conducted during the mass nesting event of 
Giant Amazon Turtles. (a) Flight path (yellow lines) over the area of interest (river sandbank). (b) Location of the study area in the Amazon 
biome (green polygon); (c) Female turtles nesting. (d) Zoom- in of the orthomosaic showing turtles seen from above. Detection errors 
associated with orthomosaic building process: (e) A marked individual that appears a second time cut in half and a ghosted turtle individual. 
(f) Double count of a moving individual.
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    |  7BRACK et al.

three consecutive days and compiled information from the marked 
individuals (Table 1). We used three different pairs of counts from 
the marked individuals to estimate three detection errors: (i) avail-
ability (�), based on the number of individuals marked in the same 
day of the flight that appear in the orthomosaic (‘N 3 AM’ and ‘N 
6 AM’ columns in Table 1); (ii) omission/ghosting (�), using the num-
ber of unique marked individuals detected in the single images that 
do not appear in the orthomosaic (‘N ortho’ and ‘N single’ in Table 1); 
and (iii) double counts (�), using the proportion of double counts of 
marked individuals in relation to the total detections of marked indi-
viduals (‘N doubles’ and ‘N total’ in Table 1). Then, we used these es-
timated probabilities to correct the counts, resulting in an adjusted 
abundance estimate for each day of survey. We provide a detailed 
description of the model in Appendix S2.

We estimated the probability of an individual to be available 
in the sandbank during flight as 0.58 (95% CI = 0.49–0.67), the 
probability of an individual present in the single images to be 
omitted or ghosted in the orthomosaic (i.e. disappearing) as 0.31 
(95% CI = 0.26–0.37), and the proportion of double counts as 
12% (95% CI = 8%–16%). Thus, the estimated abundance varied 

from 6649 to 9060 female turtles per day (Table 1). We used 
here the estimated detection errors from the marked individuals 
as correction factors for the daily overall counts in the orthomo-
saic; however, more complex model structures can be explored 
building on the modelling ideas presented here (e.g. the combi-
nation of different datasets discussed in the Section 3.2). Also, 
other sources of auxiliary data than counts of marked individu-
als, such as tracking data from telemetry devices, could be used 
to estimate the errors.

Finally, although we do not explore different sampling alterna-
tives as discussed in Strategy 3 (Section 3.3), some straightforward 
options could be considered for future surveys of river turtles to re-
duce the errors related to moving animals. For example, using two 
drones simultaneously to fly over the sandbank would reduce the 
time needed to cover the sandbank from about 1 h to half an hour. 
Another option is to decrease the lateral overlap from 70% to 50%, 
which would shorten the total flight path from 7.2 km to approxi-
mately 4 km. Given that the area is considerably flat, this reduction 
in the lateral overlap is not expected to significantly compromise 
the quality of the final orthomosaic (though it could be tested in the 

F I G U R E  3  Comparison of the resulting orthomosaic from Giant Amazon Turtle surveys, using (a) a conventional mosaic building 
approach; and (b) the proposed approach for prioritizing pixels of the animal of interest.

TA B L E  1  Counts and estimated abundance of Giant Amazon River Turtles for three orthomosaics derived from drone- based surveys over 
a sandbank in the Guaporé/Itenez river (Brazil/Bolivia).

Date

Marked individuals

Overall count
Estimated abundance 
(95% CI)N ortho N single N 3 AM N 6 AM N total N doubles

2 October 62 88 108 41 80 18 2989 6649 (5772–7671)

3 October 75 108 115 49 82 7 4073 9060 (7865–10,453)

4 October 78 116 100 38 82 4 3581 7966 (6915–9190)

Note: N ortho: number of unique marked individuals detected in the orthomosaic; N single: number of unique marked individuals detected in the 
single images; N 3 AM: number of individuals marked in that day at 3 AM; N 6 AM: number of unique individuals marked in that day that were detected 
in the mosaic; N total: total number of detections of marked individuals in the mosaic; N double: number of double counts of marked individuals.
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field). By combining these two strategies, the time needed to cover 
the sandbank would be significantly reduced (from 1 h to 15–20 min), 
ultimately minimizing substantially the double counts, omissions, 
ghosting and cutting errors.

5  |  CONCLUSIONS

The creation of orthomosaics from drone imagery is an increasingly 
common approach to count wildlife and obtain estimates of popula-
tion size. However, to the best of our knowledge, the unintended er-
rors described here that arise during the process of creating these 
mosaics have been widely overlooked in the literature. Critically, we 
demonstrate that, if not properly accounted for, these errors may 
substantially bias abundance estimates. For example, the surveys of 
Giant Amazon turtles revealed that the magnitude of these errors can 
be high (12% of double counts and 31% of omission and ghosting) 
when counting individuals in the orthomosaics. Currently, there is a 
lack of methods to prevent these errors from arising and to explicitly 
accommodate them in modelling approaches. When planning drone 
surveys for wildlife counting, one should first consider alternatives to 
conducting flights to build orthomosaics. In particular, we argue that 
using flight plans without much (or no) overlap and counting individu-
als on the resulting images can often be a simpler solution for wildlife 
drone surveys.

Nevertheless, there might be some contexts in which the use 
of orthomosaics is desirable, for example, when surveying aggre-
gated populations or when fine- scale measurements of animals or 
distances between individuals are important. Future developments 
should focus on exploring sampling design strategies to mitigate er-
rors in orthomosaic counts, developing methods to build mosaics 
that prioritize moving wildlife species, and approaches to accom-
modate these errors in abundance modelling. With methodological 
advancements addressing these challenges, we foresee significant 
improvements in the accuracy and reliability of wildlife drone- based 
surveys.
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