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Abstract
1. Counting animals when populations are spatially aggregated (e.g., breeding or 

nesting colonies, stopover or haul- out sites) enhances the accuracy and efficiency 
of survey efforts for abundance estimation. Orthomosaics generated from drone 
images are commonly used to count aggregated populations, but these counts are 
subject to detection errors that are often overlooked in abundance estimation.

2. Motivated by the need for a monitoring protocol for mass nesting events of Giant 
South American River Turtles (Podocnemis expansa), we develop a novel modelling 
approach to estimate the abundance of spatially aggregated wildlife populations 
using drone- based counts in orthomosaics while accounting for multiple sources of 
error. We use a combination of mark- resight data and overall population counts to 
account for: (i) open population during the nesting event; (ii) individuals unavailable 
for detection during flight; (iii) double counts due to the orthomosaic building pro-
cess; (iv) marked individuals detected in the mosaic with unidentifiable marks.

3. From the mark- resight data, we estimated that the daily nesting probability is 
0.37, and that 35% of the individuals that used the sandbank during the night are 
present during the morning drone flight. We also found that 20% of the turtles 
walking in the orthomosaic are double counts, and that the probability of iden-
tifying the mark in the carapace is 0.78. The total population size was estimated 
as ~41,000 turtles for the 12 days of nesting season, marking the current world's 
largest known aggregation of freshwater turtles. By comparing our approach with 
an abundance estimate based on a simpler model and with visual ground counts, 
we demonstrate the benefit of our approach and the importance of accounting 
for the multiple sources of error when counting animals in orthomosaics.

4. Synthesis and applications. The developed approach can be applied to several con-
texts to efficiently survey spatially aggregated populations using drone- derived 
orthomosaics, and to understand phenology at these aggregation sites. We pro-
vide general recommendations for planning surveys and discuss implementations 
of our approach using other types of marking methods and model assumptions.
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1  |  INTRODUC TION

Abundance is a fundamental variable in ecology and conservation, 
for instance, to study the dynamics of populations, predator–prey 
and interspecific interactions, as well as to assess the impacts 
of habitat conversion and global climate change. Moreover, by 
monitoring abundance through time, it is possible to detect and 
predict trends in populations of game, invasive, or threatened 
species, together with assessing the effectiveness of manage-
ment actions to control or increase these populations (Butchart 
et al., 2010; Moussy et al., 2022). However, estimating abundance 
can pose significant challenges, particularly in vast and extensive 
areas where species occur at low densities, making it difficult to 
detect individuals and to obtain accurate counts. Conveniently, 
several wildlife species exhibit seasonal behaviours in which indi-
viduals concentrate in small areas to rest, interact socially, mate, 
breed, and/or nest, providing a great opportunity for counting 
them (Brown, 2016). For example, waterbirds gather in nesting 
colonies (Jovani et al., 2016; Rolland et al., 1998), seals aggregate 
at haul- out and breeding sites (Hoekendijk et al., 2023; Procksch 
et al., 2020), birds jointly use stopover sites during long- distance 
migrations (Cohen et al., 2021; Schmaljohann et al., 2022), and tur-
tles synchronously nest in sandbanks and beaches (Forero- Medina 
et al., 2021; Scheelings, 2023). Therefore, counting animals during 
these periods of spatial aggregation can significantly enhance the 
accuracy and efficiency of survey efforts for estimating and mon-
itoring abundance.

Recently, drone- based surveys have emerged as an efficient and 
less- invasive method for sampling spatially aggregated wildlife popu-
lations (Christie et al., 2016; Linchant et al., 2015; Lyons et al., 2019). 
Using drones (also known as unoccupied aerial vehicles, UAV; or re-
motely piloted aircrafts, RPA) to count aggregated individuals from 
above has been shown to be more accurate and precise in com-
parison with ground- based surveys (Goebel et al., 2015; Hodgson 
et al., 2016, 2018; Ratcliffe et al., 2015), while also causing less distur-
bance to the animals (Krause et al., 2021). A common protocol used 
for drone surveys is to plan flights with a high overlap between suc-
cessive photos and lateral strips, merging the collected images into a 
single orthorectified mosaic (i.e. orthomosaic; Westoby et al., 2012; 
Wolf et al., 2014). When sampling aggregated populations, these 
flights usually cover the entire area where individuals are gathered 
(e.g. a bird colony area, Weinstein et al., 2022; or a seal haul- out islet, 
Procksch et al., 2020).

However, counting wildlife individuals in orthomosaics during 
these aggregation events is subject to some unintended sources of 
errors, potentially biasing abundance estimates if not properly ad-
dressed (Brack et al., 2018; Brack et al., 2025). For instance, an indi-
vidual may not be observable in the collected imagery (i.e. unavailable 

for detection) by being hidden below vegetation, under water, or tem-
porarily outside the flown area (e.g. foraging elsewhere). Additionally, 
even if the individual is observable in the images, a human observer 
or a detection algorithm can fail to detect it. Furthermore, animals 
that move during the drone flight can appear multiple times at differ-
ent locations in the photos used to create the orthomosaic (Figure 1) 
(Brack et al., 2025). Finally, an important characteristic is that these 
aggregations are commonly temporary, with individuals arriving and 
leaving over the course of days, causing fluctuations in the population 
size. For example, during the nesting, breeding, or migratory seasons 
of birds and seals, individuals can arrive and depart from the colony 
area on different days throughout the season. This “open population” 
characteristic might lead to biased estimates of abundance if not ac-
counted for. Worryingly, these errors are widely overlooked in abun-
dance estimations derived from orthomosaic counts of drone- based  
surveys.

In this study, we aim to develop a novel approach to estimate the 
abundance of spatially aggregated wildlife populations using drone- 
based counts in orthomosaics while accounting for multiple sources 
of error. The approach relies on the combination of two types of 
datasets: resights of marked individuals and overall population 
counts. This study was motivated by the need to estimate the abun-
dance and elaborate a monitoring protocol for Giant South American 
River Turtles (Podocnemis expansa, referred onwards simply as “river 
turtles”) during the world's largest known aggregation of freshwater 
turtles. Every year during the dry season, thousands of river turtles 
gather to nest in sandbanks and beaches of the Guaporé/Iténez 
River, along the Brazil- Bolivia border (Amazon basin) (Figure 2). 
While these mass nesting events used to be common across the 
Amazon and Orinoco basin, populations have considerably declined 
mainly due to overexploitation for meat and eggs consumption, and 

K E Y W O R D S
abundance estimation, aerial surveys, Amazonia, count data, hierarchical model, imperfect 
detection, orthomosaic, population monitoring

F I G U R E  1  Example of double count of a marked river turtle in 
the resulting orthomosaic from drone surveys.
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    |  3BRACK et al.

these large aggregations are now rare (Forero- Medina et al., 2021). 
Previous methods for estimating river turtles' abundance relied on 
counting hatchlings once they emerge (and then extrapolating the 
number of females using the average number of eggs per nest) or 
visual counts of adult turtles from the ground (Forero- Medina 
et al., 2021). Counting hatchlings is an invasive and time- consuming 
method since it requires fencing the sandbank perimeter and 

manipulating a great number of hatchlings. Visual ground counts of 
adult turtles also present limitations due to the difficulties imposed 
by counting thousands of individuals that obstruct each other and 
are in constant movement. Recently, drones have been tested to 
survey river turtle populations (Fagundes & Ferrara, 2022), holding 
great promise as a standardized, precise, and efficient method for 
estimating population sizes during these nesting events. This is key 

F I G U R E  2  (a) Location of the study area (red diamond) in the Amazon (green shadow). (b) Sandbank in the Guaporé/Iténez River (Brazil- 
Bolivia border) where Giant South American River Turtles (Podocnemis expansa) were surveyed. (c) Planned drone flight path and resulting 
orthomosaic of the sandbank area during the turtle mass nesting event. (d, e) Top- view of the turtles aggregating to nest in the sandbank. 
Some individuals were marked to allow the estimation of detection errors in counts. (f) Ground- level view of the turtles nesting.
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4  |    BRACK et al.

for assessing population trends and the effectiveness of conserva-
tion actions for the species.

We apply the developed modelling approach to estimate the 
population of river turtles during a mass nesting event. We account 
for multiple sources of errors, such as individuals' availability, indi-
viduals joining and leaving the local population during the sampling 
period, and double counts due to the orthomosaic building process. 
Although initially inspired to improve the monitoring of river turtles, 
the developed framework is very versatile and can be readily used 
or adapted to several different contexts in which aggregated popula-
tions are surveyed using a drone orthomosaic. We therefore discuss 
the applications and expansions of the developed method for other 
wildlife surveying scenarios.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study was conducted in the Guaporé/Iténez River, one of 
the major tributaries of the Madeira River, in the Amazon basin 
(Figure 2). The Guaporé/Iténez stretches approximately 1210 km, 
most of which runs along the Brazil- Bolivia border. Annual precipi-
tation in the area ranges between 1500 and 1600 mm, distributed 
in two distinct seasons, a rainy (December–May) and a dry (June–
November) period (Pouilly et al., 2012). During the low water level 
season, large sandbanks and beaches emerge, which are used by 
river turtles to nest.

The Giant South American River Turtle is one of the most social 
of freshwater turtles (Ferrara et al., 2014), travelling the rivers in large 
groups and gathering in front of the nesting sandbanks around July 
or August in this region of the Amazon. The female river turtles nest 
synchronously in particular sandbanks that they select for this pur-
pose (Alho & Pádua, 1982; Ferrara et al., 2010), starting when the 
water levels are lowest (September through November). The mass 
nesting event at the Guaporé/Iténez is the largest known for the 
species across its whole range (Forero- Medina et al., 2021). While 
river turtles may use several sandbanks to nest each year, we se-
lected a particular one in 2021 (Praia da Ilha) to survey the popula-
tion (Figure 2). This sandbank was the main nesting site for that year, 
concentrating most of the individuals and presenting the largest mass 
nesting. River turtles leave the water and enter the sandbank usually 
during the night (Vogt, 2008). Some individuals nest that same night, 
while others explore the area to return on a different night to nest 
(Ferrara et al., 2023). An individual can enter the sandbank several 
times before nesting, and after nesting it does not return to the sand-
bank (Ferrara et al., 2023).

2.2  |  Data collection

Drone surveys were conducted daily between September 26 and 
October 04 of 2021, starting immediately after sunrise, around 6 am. 

We used a multirotor drone DJI Mavic 2 Enterprise Advanced carrying 
a 48 Mpx visible sensor. To cover the entire sandbank, we conducted 
four consecutive flight missions that took a total of approximately 1 h 
per day to finish. We programmed the drone flights at 50 m above 
ground level, with 80% of frontal and 70% of lateral overlap. These 
flight settings resulted in a ground sampling distance (GSD) of 1 cm. 
The four flights of each day resulted in approximately 1500 photos per 
day. Previous to each drone survey (around 3 AM), we marked approxi-
mately 100 individuals that were on the sandbank, painting unique 
symbols over their carapaces with white paint, with the goal of identify-
ing them later at the drone images (Figure 2e). The sampling procedures 
were carried out under SISBIO/ICMBio licence number 80087, which 
included authorization for fieldwork activities in the Guaporé River and 
the capture and marking of turtles.

The photos collected each day were stitched together into daily 
orthomosaics using the OpenDroneMap™ software (https:// www. 
opend ronem ap. org/ ) (Figure 2c). Two observers reviewed each daily 
orthomosaic in the QGIS software, using a grid to guide the search 
and annotating all river turtles detected. When the turtle had a 
marked carapace, it was identified when possible or annotated as 
an unidentified mark (usually because the individual had sand on 
its carapace). Additionally, each detection (for both unmarked and 
marked individuals) was classified into either nesting or walking (see 
Section 2.3). Nesting individuals could be distinguished from the 
walking ones as they were in the core area of the sandbank, within 
a hole in the sand and with their bodies tilted downward at the rear 
end. We did not include mark- resight data for September 30 (i.e. we 
only used the overall counts) because the poor quality of the result-
ing orthomosaic (the very cloudy weather resulted in dark photos) 
precluded the identification of marks.

We organized the mark- resight data into three subsets, one con-
ventional multistate capture- recapture matrix and two types of daily 
counts of these marked individuals. The first subset was composed of 
the encounter history of each detected individual (encounter history 
matrix with individuals in rows and days in columns). We filled each 
row with 1, 2, or 3 if the individual was detected as walking, nesting, 
or not detected, respectively. In the second subset, we tallied the total 
number of marked individuals that had their marks either identified or 
unidentified each day. This subset was used to account for the bias 
resulting from marked individuals present in the orthomosaic but with 
marks not identified. In the third dataset, we compiled the number 
of detections corresponding to either unique individuals or repeated 
detections of the same individual (i.e. double counts) for each day, 
considering only the marked individuals classified as walking. Finally, 
aside from the mark- resight data, the overall counts dataset was com-
posed of the total number of walking and nesting individuals detected 
each day in the orthomosaic.

2.3  |  Model approach and fitting

Using the mark- resight data and the overall counts, we developed 
a novel modelling approach to estimate the total abundance of 
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    |  5BRACK et al.

aggregated populations while accounting for the following sources 
of variation:

 I Open population: Individuals enter the sandbank for the first time 
on different days throughout the nesting event. These individu-
als can visit the sandbank multiple times before nesting, but they 
do not return to the sandbank after nesting.

 II Individual states: An individual can be in either of two states in 
a given day: walking or nesting. Individuals walking are typically 
exploring the sandbank and can return in another day, while 
nesting individuals are usually sunken in the sand and do not re-
turn to the sandbank.

 III Unavailability: An individual that is part of the population can be 
outside the sandbank (i.e. in the water) during the drone flight 
and therefore will be unavailable for detection.

 IV Double counts: Some individuals that are walking during the 
drone flight can appear more than once in the orthomosaic.

 V Unidentified marks: It may not be possible to identify some indi-
vidual marks because of sand obstructing them.

The proposed modelling approach has two components, one 
for the mark- resight data and one for the population count data 
(Figure 3). We provide a more detailed model description in the 
Appendix S1. The first component is a multistate open- population 
capture- recapture model for the mark- resight data (Calvert 
et al., 2009; Kendall et al., 2006; White et al., 2010) that was adapted 
to include the probability of identifying the mark of an individual and 
the proportion of double counts (mark- resight model in Figure 3). 
Using a state- space formulation (Gimenez et al., 2007; Kery & 
Schaub, 2012), we modelled the biological state and the detection 

process of the individuals after the first capture (i.e. following the 
marking event) as categorical outcomes. The biological process is 
governed by the transition probabilities from the individual true 
state in time t to its state in time t + 1 (Table 1a), while the detection 
process is defined by the probability of observing each state given 
its true state (Table 1b).

F I G U R E  3  Directed acyclic graph for the combined modelling approach to estimate abundance from orthomosaic population counts and 
mark- resight data. Observed data, latent variables, and parameters are shown as diamonds, rectangles, and circles, respectively. Individual- 
level mark- resight data are used to estimate parameters associated with the detection process and temporal dynamics of the overall 
population. The overall population counts are used to estimate the total abundance with a remaining parameter of the entry process.

TA B L E  1  State- transition and detection matrices used in the 
mark- resight model. (a) Individual transition probabilities from 
true latent states between time t and t + 1. � = nesting probability. 
(b) Probabilities of observing an individual in a given state given 
its true state. � = availability probability. � = mark identification 
probability.

(a) States transition matrix

True state at time t + 1

Walking Nesting Gone

True state 
at time t

Walking (1 − �) � 0

Nesting 0 0 1

Gone 0 0 1

(b) States detection matrix

Observed state

Walking Nesting Not detected

True state Walking �j� 0
(

1 − �j

)

+ �j(1 − �)

Nesting 0 �j�
(

1 − �j

)

+ �j(1 − �)

Gone 0 0 1
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6  |    BRACK et al.

We considered that each individual can be in one of three different 
latent states at each day: 1 = walking (i.e. not nesting); 2 = nesting; and 
3 = gone (i.e. already nested and left the area). Thus, a new marked 
individual is defined as walking in the moment of marking, and it has a 
probability � to nest in the next drone flight. An individual can remain 
in the population (with a probability of 1 − �) and return to the sand-
bank multiple times before nesting. If the individual nests, it leaves the 
area and does not return (Table 1a).

In the detection process, we modelled the probability of de-
tecting a walking or nesting individual as a result of two process: 
the probability of the individual to be available on the sandbank 
area during the drone flight (�) and the probability of identifying 
the mark (�). Therefore, an individual is not detected because ei-
ther it is not available, it is available but its mark was not iden-
tified, or it is already gone from the population (Table 1b). For 
the analysis of the river turtle data, we separated the availability 
probability into two different parameters: (i) �1: probability of an 
individual that was marked at 3 am to still be available for detec-
tion in the sandbank during the 6 am flight of the same day; and 
(ii) �2: probability of an individual that was marked in 1 day and 
did not nest yet to be available for detection in the following days. 
The probability of identifying the mark (�) was estimated using the 
additional count data, in which the number of individuals that had 
identifiable marks is a proportion of the total number of marked 
individuals detected on the orthomosaic that day. Finally, we es-
timated the probability of a detected walking individual to be a 
double count (�) using the number of unique walking individuals 
with identifiable marks and the number of times these individuals 
appear in the mosaic.

For the second model (i.e. population counts model in Figure 3), 
we used the overall population counts to estimate the total abundance 
and parameters for the entry process. We used a superpopulation for-
mulation considering that a total of Ntot river turtles use the sandbank 
at least once during the sampling period. Each individual of the total 
population Ntot has a probability bt of entering in the population on 
each day, so that the sum of entries is equal to the total abundance. 
The population size at each day (Nt) is composed of the number of in-
dividuals nesting (Nnest

t
) and walking (Nwalk

t
 ), determined by the nesting 

probability (�). In the following day, the nesting individuals leave the 
population, the walking ones remain, and new entrants arrive (Bt), so 
that Nt = Nwalk

t−1
+ Bt (for t > 1; note that N1 = B1).

In the observation level of the overall counts (Ctot

t
), we assumed 

that, in each day, only a proportion of the nesting and walking indi-
viduals were available at the sandbank during the drone flight (nnest

t
 

and nwalk
t

, respectively) with availability probability �. We assumed 
that the number of nesting individuals that are available in the sand-
bank is perfectly observed (i.e. there are no double counts given that 
individuals are not walking). On the other hand, the number of walk-
ing individuals detected is composed of the true number of unique 
walking individuals that are available for detection and the number 
of double counts of walking individuals (Cdbl

t
):

The proportion of walking individuals detected that correspond to dou-
ble counts is determined by the double count probability �. Finally, we  
used vague priors for all the parameters (see details in Appendix S1).

We assessed the identifiability of the parameters under this 
model structure using simulation experiments (see tutorial in 
Appendix S2). We conducted the analysis using a two- step ap-
proach under a Bayesian framework, and the model was fitted 
with the Nimble package (de Valpine et al., 2017, 2024) in R (R Core 
Team, 2023). We first estimated the parameters for the mark- resight 
data and then used random posterior samples of these estimates to 
model the overall counts (see details in Appendix S1). We assessed 
model convergence by visual inspection of traceplots and using R- 
hat statistics (Brooks & Gelman, 1998).

3  |  RESULTS

The overall turtle counts in the daily orthomosaic varied between 531 
(373 individuals walking, 158 nesting) and 4073 (1934 walking, 2139 
nesting), resulting in a total of 26,532 river turtle detections in the 
12 days (Figure 5a). Out of the 1187 individuals marked throughout 
these 12 days, 468 were recaptured at least once, 61 more than twice, 
and only 7 turtles were resighted more than three times. A total of 325 
(69.4%) out of the 468 resightings of marked individuals occurred on 
the first occasion after marking (i.e. the individual was marked at night 
[3 AM] and resighted at sunrise [6 am] on the same day). The proportion 
of marked individuals detected in each day that had identifiable marks 
varied from 63.6% to 87.2%. Finally, considering only the marked indi-
viduals with identifiable marks classified as walking, the proportion of 
double counts varied from 6.6% to 31.6%.

Regarding the parameters estimated in the mark- resight model-
ling component (Figure 4), we found that the probability of an indi-
vidual to nest on each occasion was 0.369 (95% CI = 0.335–0.404). 

C
tot

t
= C

nest

t
+ C

walk

t
= n

nest

t
+
[

n
walk

t
+ C

dbl

t

]

.

F I G U R E  4  Posterior distribution of the probabilities estimated 
from the mark- resight data in drone orthomosaics of Giant South 
American River Turtles (Podocnemis expansa) during a mass nesting 
event in the Guaporé/Iténez River (Amazonia). Availability[1] refers 
to individuals that were present on the sandbank during the night 
and were still available in the sunrise drone flight. Availability[2] is 
the probability of individuals that used the sandbank on a previous 
day to be available during the flight in the following days.
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    |  7BRACK et al.

The probability of an individual that was present during the night 
to be available in the 6 am flight (�1) was estimated as 0.353 (95% 
CI = 0.318–0.389). On the other hand, an individual that was marked 
and did not nest yet in 1 day had a probability �2 of 0.118 (95% 
CI = 0.096–0.141) to be available in a following day. The estimated 
proportion of double counts for the walking individuals (�) was 
0.197 (95% CI = 0.157–0.241) while the probability of identifying the 
symbol of a marked individual (�) was 0.777 (95% CI = 0.745–0.807).

For the overall counts, the estimated number of new individuals 
entering the population per day varied between 19 (95% CI = 0–70) and 
9691 (95% CI = 8429–11,119) (Figure 5b). We observed a general in-
crease in the daily population size throughout the days from around 
3000 to around 14,000 (Figure 5c). The total number of female tur-
tles that used the sandbank during the 12 days was estimated to be 
41,377 (95% CI = 37,246–46,026). For comparison, we estimate total 
abundance with a simpler model for the orthomosaic counts. For this, 
we first estimated a single detection probability using the proportion of 
marked individuals at each day that appeared in the orthomosaic and 
the proportion of double counts for all detected turtles (not differen-
tiating walking from nesting individuals). Then, we adjusted the daily 
counts for these two detection errors and summed them up to get an 
estimate of the total abundance. Note that this approach does not take 
into account the temporal dynamics of the individuals, the individual 
states (nesting or walking), and the unidentified marks. As expected, 
this resulted in a much higher estimate of total abundance of 78,879 
individuals (71,708–86,993).

In addition to the comparison between different models for the 
orthomosaic counts, we also compare our results to visual ground 
counts. The visual ground counts were conducted simultaneously to 
the drone flights (6 AM) by three independent observers who were lo-
cated at the highest point of view of the sandbank. The mean count per 
day varied from 656 to 2,257, summing to 15,955 individuals through-
out the 12 days of survey. In comparison to the orthomosaic counts, 
the ground counts were generally lower than the total drone counts, 
except on the day with the fewest number of turtles on the sandbank 
(Figure S1a). Critically, the difference between the two methods in-
creased with the estimated turtle abundance (Figure S1b), suggesting 
that a greater number of individuals on the sandbank often leads to 
greater obstruction from a ground- level view, impeding a more accu-
rate ground- level count.

4  |  DISCUSSION

We developed a model to estimate the abundance of spatially ag-
gregated populations from drone- based counts in orthomosaics that 
accounts for multiple sources of false- negative and false- positive 
errors as well as the temporal dynamics of individuals entering and 
leaving the target area. To our knowledge, this is the first study to 
account simultaneously for these multiple sources of bias in ortho-
mosaic counts of drone- based surveys. Our approach relies on an 
individual- level dataset (mark- resight data) to estimate availability 
and double counts under an open- population multistate capture- 
recapture model. Importantly, the open- population approach with a 
superpopulation formulation permits accommodating the temporal 
dynamics of the individuals and thus the estimation of the total abun-
dance throughout the entire study period. Using an example of river 
turtles during a mass nesting event, we showed how these errors can 
be significant and should not be ignored when counting individuals in 
orthomosaics. For instance, we found that only 35% of the individu-
als that use the sandbank during the night are present at the moment 

F I G U R E  5  Population counts and resulting abundance estimates 
from orthomosaics of drone surveys of Giant South American River 
Turtles (Podocnemis expansa). (a) Counts of nesting and walking 
individuals per day; (b) estimated number of entrant and leaving 
individuals per day; and (c) estimated daily population size.
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of the drone flight. Critically, we also found that on average 20% of 
the turtles detected walking in the orthomosaic correspond to double 
counts, and that a single individual can appear up to seven times in the 
mosaic. Our approach also accounted for the fact that some marked 
individuals detected in the orthomosaics had their marks unidentifi-
able (approximately 20% for the river turtles), which can cause biased 
parameter estimates. By comparing our results to those from a much 
simpler modelling approach, we highlight the importance of consider-
ing all these sources of variation in the counts, demonstrating that not 
properly accommodating them can lead to substantial bias in abun-
dance estimates.

During the model development, we identified some general rec-
ommendations for designing orthomosaic drone surveys to count 
spatially aggregated wildlife populations. First, if the goal is to es-
timate the total number of individuals that use the aggregation site 
throughout the season, it is important that the sampling time win-
dow encompasses the entire period in which the site is used by the 
target wildlife species. To be feasible, this may require conducting 
surveys on alternate days. However, note that if the substitution of 
the population is expected to be high for the specified time interval 
(i.e. too many entries and departures), increasing the time interval 
between surveys can be problematic. Furthermore, marking a sub-
set of individuals before each drone flight (as we did) can provide 
better information about the temporal variability of the parame-
ters compared to marking only once before starting the surveys. 
Nevertheless, because individuals marked in the initial occasions 
have longer encounter histories and thus may contribute with more 
information for the parameter estimation, one could prioritize mark-
ing more individuals in these first visits. Future research using simu-
lation experiments to evaluate sampling design strategies, including 
total survey duration, time interval between occasions, and when to 
mark individuals can be important for survey optimization in moni-
toring programmes.

The formulation of our proposed model resembles previous ap-
proaches that combined counts and mark- resight data (with band-
ing/ringing) to model abundance with temporal dynamics in bird 
migratory stopover sites (Lyons et al., 2016; Matechou et al., 2013; 
Tucker et al., 2023). However, these former approaches did not in-
clude multiple states, the possibility of double counting individuals, 
and the presence of unidentifiable marks. Importantly, Matechou 
et al. (2013) explored the influence of double counting and uniden-
tifiable marks using simulation experiments, and concluded that not 
taking into account these sources of error can result in abundance 
overestimation. Another source of error that can be accommodated 
in our modelling framework is the possibility of misdetecting an in-
dividual nesting as walking, to account for individuals that appear 
in the orthomosaic walking before or after nesting. We briefly ex-
plored with simulations a version of the model that accommodates 
the misdetection of the state of the individual by including a spe-
cific misdetection probability in the detection matrix. The results of 
this model were promising, especially for scenarios in which several 
individuals are recaptured on multiple occasions after the marking. 
However, we did not consider this model formulation for the turtle 

data because the probability of misdetection was estimated to be 
very close to zero, suggesting that this type of misdetection is insig-
nificant for this dataset.

The developed approach can be applied to other contexts in 
which spatially aggregated populations are surveyed using drone- 
derived orthomosaics. For instance, drones have been used to sur-
vey freshwater turtles in basking areas (Bogolin et al., 2021) and 
sea turtles in nesting sites (Rees et al., 2018; Thorson et al., 2012). 
Furthermore, orthomosaics are a common approach used in surveys 
of haul- out sites and nesting or breeding colonies of seals and birds 
(e.g., Goebel et al., 2015; Kellenberger et al., 2021; Korczak- Abshire 
et al., 2019; Procksch et al., 2023; Weinstein et al., 2022). Obviously, 
these different contexts may require some adaptations, such as other 
approaches to mark individuals. For example, seals were marked for 
drone surveys by clipping their fur (Sorrell et al., 2019), elks were 
attached with high- visibility collars to be resighted in aerial surveys 
(Bear et al., 1989), and different ungulate species have been marked 
with paintballs for aerial resighting (Pauley & Crenshaw, 2006; 
Skalski et al., 2005). Another important adaptation refers to which 
individual states to represent. When no differences are expected 
in the temporal dynamics among individuals of different classes, 
our modelling framework could be simplified to represent only two 
states: present and gone. However, some aggregated populations 
can present different temporal behaviours between adult males and 
females (and possibly juveniles) (e.g., Dujon et al., 2021; Infantes 
et al., 2022), potentially requiring the use of sex and/or age as multi-
ple states. Multiple individual states might also need to be accounted 
for when studying bird nesting colonies, in which the nest stage (e.g., 
nest building, eggs incubation, nestling period) might influence the 
temporal dynamic of the adults (Gallego & Sarasola, 2021; Lachman 
et al., 2020; Sardà- Palomera et al., 2017). Finally, it is important to 
think carefully if an open population or closed population assump-
tion should be considered. For example, when surveying populations 
in which the same individuals use the area of aggregation throughout 
the sampling period (i.e., entries and departures are insignificant), the 
model can be simplified to a closed- population capture- recapture 
model, estimating only availability, double counts, and mark identi-
fication. For example, adult seals may use a haul- out site for rest-
ing between feeding periods throughout several weeks (Cordes & 
Thompson, 2015), with the same individuals using the area during 
this period.

Other types of data at the individual level (different from mark- 
resight data) may also be used in the proposed modelling framework. 
For example, GPS tracking data from telemetry devices have been 
used to estimate detection errors in aerial surveys, particularly to ad-
dress availability and perception of individuals (Barker, 2008). In the 
context of our approach, if some individuals are telemetry tracked, 
it would be possible to estimate their availability during the drone 
flight based on their locations. Furthermore, by using these move-
ment tracks during flights, it may be possible to model movement 
patterns and identify (or estimate) double counts. In conclusion, the 
developed approach provides a flexible framework that can be tai-
lored for a wide variety of species and contexts according to the 
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nature of the aggregated population (i.e., closed or open), the various 
possible individual states, and the different types of individual- level 
data to be collected.

4.1  |  Conservation and management implications

The Giant South American River Turtle has experienced historical 
declines. Originally, its abundance was significantly greater, and mass 
nesting occurred in many tributaries of the Amazon and Orinoco 
Rivers, but more recently it has either disappeared from many of 
these rivers or is now present in much lower densities. Yet, there 
are still some large populations of the species across its range, and 
some of them seem to be recovering (Forero- Medina et al., 2021). 
The seasonal behaviour of this species, aggregating and nesting in 
sandbanks during the dry season, provides an invaluable opportu-
nity to monitor its populations. One traditional method for estimat-
ing the number of nesting females is counting the nests, particularly 
for small aggregations. However, estimating abundance in areas with 
substantial mass nesting using such a method becomes challenging 
or even impossible because individual nests cannot be distinguished 
from each other. Another common method for estimating the abun-
dance of river turtles is counting the hatchlings when they emerge. 
Yet, counting hatchlings presents important challenges, potentially 
providing biased abundance estimates (Norris, 2025), besides being 
a more invasive and laborious approach. Importantly, we have 
shown that visual ground counts can also be an ineffective approach 
for assessing abundance during mass nesting events due to the ob-
struction of the ground- level view that large numbers of individuals 
cause.

Therefore, the presented approach has important advantages 
for monitoring aggregated turtle populations. First, the aerial images 
provide a great point of view to count the turtles without obstruc-
tions. Second, a standardized method that could be applied and com-
pared across different sites and different years, with the estimation 
of associated uncertainty, delivers a more robust assessment of pop-
ulation size and trends. Furthermore, using a less invasive technique 
that reduces manipulation and disturbance of animals, such as drone- 
based surveys, is particularly important for imperilled species. We 
therefore foresee the establishment of a collaborative network of 
governmental and non- governmental institutions across the mass 
nesting areas of river turtles to monitor the species using a similar 
protocol to the one that we developed.

The estimated number of females in this study confirms the ut-
most importance of this site for the conservation of the species. Our 
estimated total abundance for the aggregation site during 12 con-
tinuous days of mass nesting was 41,377 turtles. This estimate is 
higher than any other mass nesting recorded for the species (Forero- 
Medina et al., 2021). Since the nesting event continued for some 
days after the last drone flight, we can assume that a few thousand 
additional females still used this particular sandbank. Although this 
abundance estimate may represent a large number of river turtles, 
it is probably only a fraction of what the historical populations were 

in the Amazon region, based on historical records of exported eggs 
(Forero- Medina et al., 2021). The implementation of a monitoring 
protocol should consider extending the surveys throughout the en-
tire nesting period. Furthermore, because there are other sandbanks 
in the region that the turtles also use to nest, it would be important 
to include them to have a comprehensive estimate of the nesting 
population in the region.

Seasonal aggregations of wildlife populations (e.g., haul- out sites, 
migratory stopover sites, nesting or breeding colonies) provide a great 
opportunity for efficiently estimating and monitoring abundance. 
Drone- based counts have been used to survey spatially aggregated 
populations (Christie et al., 2016; Lyons et al., 2019), but there has 
been little awareness of the multiple detection errors that may affect 
counts and consequently bias population estimates. The use of or-
thomosaics generated from drone flights is becoming an increasingly 
common approach to survey aggregated wildlife populations and, for 
this reason, we believe the developed methodology has great poten-
tial to be applied (and adapted) to many different contexts in which 
threatened species are surveyed using drone- based orthomosaics. 
Ultimately, we expect that this approach will contribute to the effi-
cient and timely monitoring of abundance in wildlife conservation and 
management programs.
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